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Abstract— The implementation and testing of real-time control of 

a two-wheeled mobile robot are described in this study. The 
mobile robot used in this study is underactuated with three inputs 
for mobility and two input for control. The challenge is to control 
the oscillation of the intermediate body while following the path. 
The robot is tested in three motions: translational, rotational, and 
uphill. A linear-quadratic regulator is designed and tested with the 
help of the simulation and required parameters are compared to 
get the best result  
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I. BACKGROUND 

  Two-wheeled robots are gaining popularity due to their 
simple mechanical design. This paper is all about 
QUASIMORO (Quasiholonomic Mobile Robot), which was 
designed and built at McGill University’s Centre for Intelligent 
Machines. There has been a lot of research done on 2 
wheeled robots. As it is a system with two wheels parallel to 
each other with an intermediate body in between them, 
there is always a challenge to stabilize it in equilibrium. There 
are stabilization methods used to stabilize it. Passive 
stabilization is where the robot is stabilized mechanically, 
generally by using a third wheel (castor wheel) and another is 
active stabilization. The mass centre of the robot plays the 
main role in active stabilization which makes the robot 
unstable at its equilibrium state. To simplify control of the 
robot, the mass was placed below the wheel axis as shown in 
Fig 1. 

 

 
                            Fig. 1 Quasimoro prototype 

There are many other types of wheeled robots with either 
less payload or with a third wheel but here significant 
payload almost one-third of the robot's total mass was used. 
The robot used a state feedback controller. As the robot 
doesn’t have any third wheel, hence the robot is 
underactuated which means the robot would have to deal 
with two problems i.e., firstly stabilizing the intermediate 
body and also following the desired path. The robot focuses 
to settles the intermediate body at its equilibrium point. This 
simply simplifies the robot control which enabled the use of 
linear state feedback control. 
 
While working on this two-wheeled mobile robot the primary 
focus for our research is the feedback control for the robot. 
Quasimoro controls its IB to settle at a stable equilibrium 
point. This significantly simplifies the dynamics of the robot, 
thereby allowing the use of a simple linear state-feedback 
control law. 

II. MODEL OF THE ROBOT  

 

 

Fig. 2 mathematical model of robot 

The above robot is modelled to state space form. The 
parameters of the system used are: 
 

J1= 0.591 kg m2 

J2= 0.628 kg m2 
d= 0.120 m 
mwheels= 3.459kg 
mbody= 16.222kg 
rwheel= 0.295m 
l= 0.480m 

 
 



 
State Equations are 
 
 

ẋ= Ax + Bu 
y = Cx 

 
It is further linearized at its equilibrium position keeping x0=0. 
 
 

  =  

 
 

 
 
 
Here x is the state vector with the following state variables 
 

x= [θ1  θ2   θ3 θ̇1 θ̇2 θ̇3] 
 

U1 and U2 are the inputs for two wheels representing there 
torques 
 
The A matrix is not full ranked and hence the system will be 
not controllable. Also, the desired output cannot be tracked 
by full state feedback. To solve this problem, states of the 
model can be reducing to the following: 
 

xr= [θ3 θ̇1 θ̇2 θ̇3] 
 

 

Further partial state feedback control law is used: 
 

u=My – Kxr 

 

here xr is the reduced state vector. M and K are the gain 
matrices for the input and the state feedback respectively. 
Hence the reduced state model of the system is as follows 
 

xr= [θ3 θ̇1 θ̇2 θ̇3] 
 

Ar=  

 
 

Br=  

 
 

 

      Cr =  

 
 
The controller designed for the system uses Linear Quadratic 
Regulator. This is a widely used control design. It provides a 
optimally controlled feedback gain that is a Kr matrix that 
minimizes the integral (i.e. the energy used). 
 

J= (t)Qrxr(t)+uT(t)Ru(t)] dt 
 
where Q and R are symmetric, and positive semidefinite 
positive-definite weighting matrices, respectively. 
The gain matrix Kr is computed from the following equation: 

 
Kr= R-1  S 

 
Where S is unique, symmetric and positive semidefinite and 
the solution of the Riccati Equation 
 

SAr + S + Q – SBR-1BTS = 0 
 
Here 0 is not scalar but can be said a 4x4 matrix of zeros. 
 

       
 

III. SIMULATION 

 
 The above model was the originally made with reference to 
actual robot that was built at McGill University, Canada. 
Hence to create my own simulation, the factors like the 
dimensions and mass of the original model were used to 



make an approximate duplicate model of the original in the 
software. MATLAB and Simulink were used to perform the 
simulation of the model. The original model uses two inputs, 
one input for each wheel to steer the robot while to simplify 
the simulation, reference to an inverted pendulum cart or 
self-balancing robot was used. 
 

 
                                Fig. 3 simulated model of mobile robot  

 
ẋ= Ax + Bu 

y = Cx 
The parameter used are: 
 

J1= 0.5 kg m2 

J2= 0.628 kg m2 
d= 0.120 m 
mwheels= 3.5 kg 
mbody= 16 kg 
rwheel= 0.295m 

 

A=  

 
 

B=  

 
 

C=  

 
 

 
Fig. 4 LQR controller block diagram 

As mentioned above, LQR is applied to get an optimal 
controlled feedback gain K. 
 
Matrix Q and R were chosen as standard were, 

 
Q=CTC 
 
R=1 

 

With these values of Q and R, the gain matrix K was 
calculated. 
 

K=  

 

 

Fig.5 Simulink model of our simulation 

 

 
Fig. 6 stability graph obtained of mobile-robot 



The above graph describes the stabilization to the robot to its 
equilibrium state using the LQR control. 
 
In order to check the efficiency of the controller I applied PID 
control (Proportional Integral Derivative) to check weather 
LQR is the best option or PID could give better results. This is 
the result of PID controller. 
 

 

Fig. 7 Stabilization graph using PID control 

 
By observing the result of this controller, it can be said that 
LQR control works better. The main reason is that, for every 
different scenario the constants values for the PID controller 
has to be changed while LQR doesn’t require such changes 
and hence for this model LQR works efficiently well. 
 
The original paper used the original robot to perform various 
tests and observe its behaviour in real physical conditions. It 
was difficult to simulate these conditions in MATLAB hence it 
was just studied and analysed. These are the list of such 
conditions in which the physical robot was tested. 
 
A.  Robot Translation and Payload Variation 
 
Analysis in the reference article was done to determine the 
changes caused due to payload variation. 70 N is the 
maximum nominal payload. The load utilized in this example 
is about 15 N. The fixed-distance test was chosen, with zero 
to four 15-N weights put on the robot tray. As a result, the 
1.5-m motion was repeated five times with a different 
payload each time. There was no discernible difference 
between the tests based on visual observation. Though after 
60N there was a slightly larger variation in overshoot. 

 
B. Reaching a Stationary Orientation 

 
The goal of the test was to achieve a 180-degree angular 
displacement with no translational motion. 3 rad/s is the 
maximum speed obtained. There is a little overshoot in the 
data, showing that the robot settles at an angle of 3.158 rad 
rather than 3.1416 rad. This minor inaccuracy, together with 
the error associated with the manual measurement of the 

distances with which the angular displacement was 
computed, is again attributed to slippage. 
 
C. Robot Rotation and Payload variation  
 
Because no reactive forces or moments happen on the IB 
during the robot's rotation, the payload should have no 
influence on the tilt. To keep the same velocity, increasing 
the payload should merely demand a larger torque from the 
motors, which should not be an issue. to confirm We next 
performed the rotation test while changing the payload. The 
payload, as planned, had no visible payload. During a rotation, 
this has an impact on performance. The speed is easily 
noticeable. The maximum tilt values, which fluctuate, are 
managed and maintained. between 1.169 and 1.283 
, rather than being caused by the tilt-sensor noise, the 
motion itself. 
 
D. Straight Path Then Turn  
 
 The IB moves 1.5 meters forward, turns 180 degrees, and 
then moves 1.5 meters forward again to return to its original 
position. The robot completes the action, however, there is a 
tiny variation between the beginning and end positions, 
according to examination. We can observe that the robot 
does not return to its exact beginning location since it turns 
slightly over 180 degrees. We can also see an overshoot, 
which is caused by the IB swinging during deceleration, but 
the robot corrects it in under 3 seconds. The placement error 
is less than 20 millimetres. 

 

Fig. 8 straight and turn motion 

 
E. Arbitrary Velocities  

 
Using the joystick in manual control mode, the robot travels 
through a series of arbitrary velocities. Quasimoro is assigned 
a history of random velocities, and we additionally record the 
observed tilt 3 of the IB, which rises by just 0.1 rad. 
 
 
 



F. Sudden Stop 
 

Quasimoro's reaction to an abrupt stop was studied. The 
joystick trigger button is used to bring the robot to a 
complete halt after 3 seconds. The IB shifted forward as a 
result of this. Because of the IB's swing, velocity increased for 
a fraction of a second before dropping to zero in less than 2 
seconds. In less than 3 seconds, IB stability was achieved. 
During this movement, the highest tilt observed was close to 
0.2 rad. 
 

 

Fig. 9 Graph for velocity and tilt angle for sudden stop 

 
 
G. Uphill Motion 

 
The robot was able to effectively climb a 20% incline while 
maintaining the appropriate pace and keeping the IB 
horizontal rather than parallel to the ramp during an outdoor 
test. During an indoor test, the robot was also able to 
effectively climb a 10% incline. During the test, the robot 
accelerates to 1 m/s in 2 seconds, then maintains a constant 
speed of 1 m/s over the incline, then decelerates till it comes 
to a complete stop in 2 seconds.  
The 10 percent elevation was achieved by placing one flat 1.5 
m table on the left, an inclined 1.5 m table in the middle, and 
then another flat 1.5 m table on the right. 

 

Fig. 10 Graph for tilt angle on uphill motion 

 
Fig. 11 Graph for velocities on uphill motion 

 
 
 

IV. CONCLUSION  

 
It can be concluded that the research paper was very well 
written and performed. All the graphs and the experiments 
performed were all tested on a real robot so that values of 
gains mentioned in the paper were practical. In order to 
analyse the paper and verify that the model worked perfectly, 
I applied PID controller to check weather it could work better 
on the model or not, which turned out to be false and 
concluded that LQR control worked best for such kind of 
model. 
 

REFERENCES 

 
[1] P. Oryschuk, A. Salerno, A. M. Al-Husseini and J. Angeles, 

"Experimental Validation of an Underactuated Two-Wheeled Mobile 

Robot," in IEEE/ASME Transactions on Mechatronics, vol. 14, no. 2, 

pp. 252-257, April 2009, doi: 10.1109/TMECH.2008.2007482. 
[2] A. Salerno and J. Angeles, "The control of semi-autonomous two-

wheeled robots undergoing large payload-variations," IEEE 

International Conference on Robotics and Automation, 2004. 
Proceedings. ICRA '04. 2004, 2004, pp. 1740-1745 Vol.2, doi: 

10.1109/ROBOT.2004.1308075. 

[3] Christopher Nielsen. ECE 682: Multivariable Control Systems Lecture 
Notes. University of Waterloo, Fall 2021. 

[4] A. Salerno and J. Angeles, “The control of semi-autonomous two 

wheeled robots undergoing large payload-variations,” in Proc. IEEE Int. 
Conf. Robot. Autom., New Orleans, LA, 2004, pp. 1740–1745. 

[5] A. Salerno and J. Angeles, “On the nonlinear controllability of a 

quasiholonomic mobile robot,” in Proc. IEEE Int. Conf. Robot. Autom., 
Taipei, Taiwan, Sep. 2003, pp. 3379–3384. 

 

 

 

 

 

 

             

 

 



 

 

 


